Full-Band Calculations of Thermoelectric Properties of Si Nanowires and Thin Layers

نویسندگان

  • Neophytos Neophytou
  • Hossein Karamitaheri
  • Hans Kosina
چکیده

Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl, and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and thermoelectric properties of Si ultrathin layers and nanowires of diameters in certain cases up to 20nm. We couple the Linearized Boltzmann theory: i) to the atomistic sp 3 d 5 s * tight-binding (TB) model for the electronic properties of the channels, and ii) to the modified valence-force-field method (MVFF) for the calculation of their thermal conductivity. We calculate the room temperature electrical conductivity, Seebeck coefficient, power factor, thermal conductivity, and ZT figure of merit of the ultra-thin Si layers and nanowires. We describe the numerical formulation of coupling TB and MVFF to the Linearized Boltzmann transport formalism, together with all relevant scattering mechanisms. The properties of low-dimensional channels are highly anisotropic, and optimized thermoelectric properties can be achieved by the choice of the appropriate transport and confinement orientations, as well as confinement length scale. We identify bandstructure engineering techniques that lead to thermoelectric power factor improvements. Finally, we show that modulation doping techniques can improve thermoelectric performance significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers

Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl , and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and...

متن کامل

Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds

Abstract: In this work we investigate the electronic, optical, dynamic and thermoelectric properties of ternary copper-based Chalcogenides CuSbX2 (X= S, Se) compounds. Calculations are based on density functional theory and the semi-classical Boltzmann theory. Computations have been carried out by using Quantum-Espresso (PWSCF) package and ab-initio pseudo-potential technique. To estimate the e...

متن کامل

Ab–initio study of the electronic and optical traits of Na0.5Bi0.5TiO3 nanostructured thin film

The electronic, and optical properties of rhombohedral Na0.5Bi0.5TiO3nanostructured thin film have been studied by the first–principle approach. Densityfunctional theory (DFT) has been employed to calculate the fundamental properties ofthe layers using full–potential linearized augmented plane–wave (FPLAPW) method. A2×2×1 supercell was constructed with two vacuum slabs o...

متن کامل

Determining factors of thermoelectric properties of semiconductor nanowires

It is widely accepted that low dimensionality of semiconductor heterostructures and nanostructures can significantly improve their thermoelectric efficiency. However, what is less well understood is the precise role of electronic and lattice transport coefficients in the improvement. We differentiate and analyze the electronic and lattice contributions to the enhancement by using a nearly param...

متن کامل

Study of Composition and Optical Properties of Chemically Deposited Pd-xSb2S3 Thin Films

The study reports on the effects of different concentration of palladium impurities on the compositional and optical properties of Palladium Doped Antimony Sulphide (Pd-xSb2S3) thin films grown by the chemical bath deposition method. The films were grown at room temperature and other deposition conditions such as the bath temperature, pH, complexing agents were kept constant. The concentration ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014